# Reaktion von konjugierten Doppelbindungsystemen mit Dihalogen(diorganylamino)boranen und Na/K-Legierung

Walter Maringgele<sup>a</sup>, Sven Dielkus<sup>a</sup>, Regine Herbst-Irmer<sup>a</sup>, H. Michaelsen<sup>b</sup> und Anton Meller<sup>a</sup>

<sup>a</sup> Institut für Anorganische Chemie der Universität, Tammannstraße 4, D-37077 Göttingen (Deutschland)

<sup>b</sup> Institut für Organische Chemie der Universität, Tammannstraße 2, D-37077 Göttingen (Deutschland)

(Eingegangen den 3. September 1993)

#### Abstract

The reaction of 2,3-dimethylbuta-1,3-diene or 2-methylbuta-1,3-diene with Na/K-alloy and dichloro(diisopropylamino)boranc in n-hexane yielded the 1-bora-cyclopent-3-enes, A and II, and 1-bora-cyclonona-1,3-diene, I, respectively. Cycloocta-3,7-diene reacts with dihalogeno(diorganylamino)boranes and Na/K-alloy in n-hexane to yield the 9-bora-bicyclo[4,2,1]non-7-enes III, V, VI and the 1,6-bis(diorganylaminofluoroboryl)-cyclooct-7-enes IV and VII. When 1,2-dimethoxyethane was the solvent, only the dimeric cyclooctene, C, was obtained. The compounds were characterized by elemental analyses and spectroscopy [MS; NMR (<sup>1</sup>H, <sup>11</sup>B, <sup>13</sup>C, <sup>19</sup>F)]. An X-ray analysis is presented for I, MNDO-calculations have been carried out for III and III\*.

# Zusammenfassung

Durch Reaktion von 2,3-Dimethylbuta-1,3-dien bzw. 2-Methylbuta-1,3-dien mit Na/K-Legierung und Dichlor(diisopropylamino)boran in n-Hexan wurden die Boracyclopent-3-ene A und II sowie das 1-Bora-cyclonona-3,7-dien, I, erhalten. Cyclooctadien-1,3 reagiert mit Dihalogen(diorganylamino)boranen und Na/K-Legierung in n-Hexan zu den 9-Borabicyclo[4,2,1]non-7-enen III, V, VI und den 1,6-Bis(diorganylaminofluoroboryl)cyclo-oct-7-enen IV und VII. Bei Verwendung von 1,2-Dimethoxyethan wurde nur das dimere Cycloocten C erhalten. Die Verbindungen wurden elementaranalytisch und spektroskopisch [MS; NMR (<sup>1</sup>H, <sup>11</sup>B, <sup>13</sup>C, <sup>19</sup>F)] charakterisiert. Für I wurde eine Röntgenstrukturanalyse, für III und III\* MNDO-Berechnungen durchgeführt.

Key words: Boron; Borane; Boracycloalkene; Boron-nitrogen compounds

# 1. Einleitung

Über Reaktionen der bei der Dehalogenierung von Dihalogen(diorganylamino)boranen mit Na/K-Legierung entstehenden subvalenten Borylene "BNR<sub>2</sub>" mit aromatischen  $\pi$ -Systemen [1] wurde bereits berichtet. Von aliphatischen  $\pi$ -Systemen sind bislang Reaktionen von Alkinen [2,3] und Alkenen [4-6] untersucht worden. Über Reaktionen von Verbindungen mit konjugierten Doppelbindungen ist jedoch nur wenig bekannt [2,3]. Ein Gemisch von Dichlor(diisopropylamino)boran und Buta-1,3-dien bzw. 2,3-Dimethylbuta-1,3-dien reagiert mit Na/K-Legierung in n-Hexan zu den entsprechenden 1-Diisopropylamino-2,5-dihydroborolderivaten [2]. Unter ähnlichen Reaktionsbedingungen führt die Reaktion vom 2,5-Dimethylhexa-2,4-dien zu dem 1,3-Bis(diisopropylamino)-2,2-dimethyl-4-(2-methyl-1-propenyl)-1,3-diboretan. In der vorliegenden Arbeit wird über die Umsetzung von 2-Methylbutadien-1,3, 2,3-Dimethylbuta-1,3-dien und Cycloocta-1,3-dien mit den Enthalogenierungsprodukten von Dihalogen(diorganylamino)boranen berichtet.

## 2. Ergebnisse und Diskussion

Setzt man 2,3-Dimethylbuta-1,3-dien bzw. 2-Methylbuta-1,3-dien mit Na/K-Legierung und Dichlor(diiso-

Correspondence to: Prof. Dr. A. Meller.



Abb. 1. Kristallstruktur von I.

propylamino)boran um, so erhält man die entsprechenden 1-Boracyclopent-3-ene A [2] und II (Gl. (1)).

$$R - C \xrightarrow{CH_2} H_2 + Cl_2 BN(i-C_3H_7)_2 \xrightarrow{Na/K, n-Hexan} -2(NaCl/KCl)$$

$$A \quad R = CH_3 \quad R' = CH_3$$

$$II \quad R = H \quad R' = CH_3$$

$$K' \xrightarrow{R} B_{N(i-C_3H_7)_2} (1)$$

Bei der Reaktion zu A konnten wir nun aus einer höher siedenden Fraktion (73°C/0.002 mbar) das 1-Bora-cyclonona-3,7-dien, I, isolieren.

Abbildung 1 zeigt das Ergebnis der Kristallstrukturanalyse von I. Atomkoordinaten sowie ausgewählte Bindungslängen und -winkel sind in den Tabellen 1 bzw. 2 aufgelistet. Das Molekül liegt auf einer zweizähligen Achse, nur die N-Diisopropyl-gruppe erfüllt diese Symmetrie nicht und wurde daher als Unordnung verfeinert. Die B-C-Bindungslänge beträgt 1.592(2) Å und entspricht damit einer typischen B-Csp<sup>3</sup>-Einfachbindung [7].

$$CH_{3}-C$$

$$CH_{2}-CH_{2}$$

$$CH_{3}-C$$

$$CH_{2}-CH_{3}$$

$$CH_{3}-C$$

$$CH_{2}$$

TABELLE 1. Atomkoordinaten (×10<sup>4</sup>) und äquivalente isotrope Auslenkungsparameter (Å<sup>2</sup>×10<sup>3</sup>) für I.  $U_{eq}$  wird berechnet als ein Drittel der Spur des orthogonalen  $U_{ij}$ -Tensors

| Atom   | x       | У        | z        | $U_{eq}$ |
|--------|---------|----------|----------|----------|
| C(1)   | 4000(1) | 6940(2)  | 1432(2)  | 31(1)    |
| C(2)   | 3802(1) | 6144(1)  | 2210(1)  | 28(1)    |
| C(3)   | 3991(1) | 4889(2)  | 2462(2)  | 36(1)    |
| C(4)   | 4412(2) | 4099(2)  | 1970(3)  | 58(1)    |
| C(5)   | 3875(1) | 4120(2)  | 3340(2)  | 49(1)    |
| C(6)   | 3419(1) | 6940(2)  | 2746(2)  | 34(1)    |
| B(1)   | 5000    | 7789(2)  | 2500     | 26(1)    |
| N(1)   | 5199(2) | 9131(2)  | 2716(5)  | 21(1)    |
| C(20)  | 6196(3) | 9756(3)  | 3864(4)  | 27(1)    |
| C(21)  | 6146(3) | 10624(4) | 4764(4)  | 35(1)    |
| C(22)  | 6628(7) | 10454(8) | 3326(10) | 35(2)    |
| C(20') | 4390(3) | 10080(3) | 1685(3)  | 27(1)    |
| C(21') | 3997(3) | 9895(4)  | 216(3)   | 34(1)    |
| C(22') | 3538(5) | 10178(8) | 1680(8)  | 31(2)    |

Bei der Reaktion zu II wurde im Massenspektrum in einer höher siedenden Fraktion (*ca.* 80°C/0.002 mbar) ein analoges Molekül (m/z = 247) sowie dessen Dihydroderivat (m/z = 249) gefunden. Ausgehend von 2-Methylbutadien ergibt sich durch unterschiedliche Verknüpfung der Moleküle die Möglichkeit der Isomerenbildung:



Aufgrund dieser Isomerenbildung, die ferner von einer teilweisen Hydrierung begleitet war, konnte in diesem Fall keine Reinsubstanz isoliert werden.

Bei der Umsetzung von 2,3-Dimethylbuta-1,3-dien bildet sich auch eine sehr hoch siedende Fraktion  $(250^{\circ}C/0.002 \text{ mbar})$ , welche sich als Poly(2,3-dimethylbutadien) erwies.

TABELLE 2. Ausgewählte Bindungslängen (Å) und-winkel (°) für I

| C(1)-C(2)        | 1.513(2) | C(1)-B(1)        | 1.592(2) |
|------------------|----------|------------------|----------|
| C(2)-C(3)        | 1.333(2) | C(3)-C(4)        | 1.511(2) |
| C(4)-C(4)#1      | 1.546(4) | B(1)-N(1)        | 1.421(3) |
| C(2)-C(1)-B(1)   | 111.1(1) | C(3)-C(2)-C(1)   | 124.3(1) |
| C(2)-C(3)-C(4)   | 123.2(1) | C(3)-C(4)-C(4)#1 | 113.2(2) |
| N(1)-B(1)-C(1)#1 | 113.1(1) | N(1)-B(1)-C(1)   | 134.4(1) |
| C(1)#1-B(1)-C(1) | 112.5(2) |                  |          |
|                  |          |                  |          |

Symmetrietransformationen für die äquivalenten Atome: #1 -x+1, y, -z+1/2

Setzt man Difluor(diorganylamino)boran mit Na/ K-Legierung und Cycloocta-1,3-dien in n-Hexan um, so erhält man nebeneinander die 9-Borabicyclo[4,2,1] non-7-ene III, V und VI und die 1,6-Bis(diorganylaminofluoroboryl)-cyclooct-7-ene IV und VII (Gl. (2)).



Für die Umsetzung von Difluor(diisobutylamino) boran war die Reindarstellung eines IV entsprechenden Bis(fluoroboryl)-Derivats nicht möglich.

Für die Darstellung von III wurde auch Dichlor(diisopropylamino)boran (in n-Hexan als Lösungsmittel) erfolgreich eingesetzt. Die Verwendung von 1,2-Dimethoxyethan führte in diesem Falle nicht zu III, sondern zu dem dimeren Cycloocten C [8].



Für die Reaktion von Cyclooctatetraen hatten sich in den <sup>13</sup>C-NMR-Spektren Hinweise auf die ebenfalls ablaufende Bildung von isomerem Boracyclononatetraen mit borständigen sp<sup>2</sup>-C-Atomen ergeben [9]. Für die Synthese von **III**, V und VI findet man nun (unabhängig davon, ob das Dichlor- oder Difluor(diorganylamino)boran eingesetzt wurde), daß ebenfalls an Bor gebundene, sp<sup>2</sup>-hybridisierte C-Atome vorliegen.

$$\begin{array}{ccc} CH - CH_{2} & III^{\star} & R = i \cdot C_{3}H_{7} \\ CH & CH_{2} & V^{\star} & R = i \cdot C_{4}H_{9} \\ CH & CH_{2} & VI^{\star} & R = s \cdot C_{4}H_{9} \\ CH & CH_{2} & III^{\star} & R = s \cdot C_{4}H_{9} \end{array}$$

$$III^{\star} \xrightarrow{h\nu (254 \text{ nm})} III \qquad (3)$$

Daß jeweils beide Formen nebeneinander vorliegen, kann man auch aus den <sup>11</sup>B-NMR-Spektren entnehmen. Die Werte der Chemischen Verschiebung  $\delta^{11}$ B für III, V und VI liegen zwischen 48.5 und 49.5 ppm, jene für III<sup>\*</sup>, V<sup>\*</sup> und VI<sup>\*</sup> (bedingt durch die beiden Doppelbindungen) im Bereich von 37.5–38.9 ppm. Eine destillative Trennung III<sup>\*</sup>/III, V<sup>\*</sup>/V, VI<sup>\*</sup>/VI war nicht möglich. Es zeigt sich jedoch (am Beispiel von III<sup>\*</sup>/III), daß durch UV-Bestrahlung (-30°C, n-Hexan) eine Umwandlung von III<sup>\*</sup> in III stattfindet (Gl. (3)) Nach 24-stündiger Bestrahlungsdauer war, wie die NMR-Spektren zeigten, kein III<sup>\*</sup> mehr nachweisbar.

Durch MNDO-Berechnung [13,14] für III und III<sup>\*</sup> zeigt sich, daß die B-C-Abstände in III etwa 1.61 Å, in III<sup>\*</sup> etwa 1.54 Å betragen. Die Bildungswärme (berechnet) für III beträgt -16.40 Kcal, für III<sup>\*</sup> -6.85 Kcal. Der B-C-Abstand in III von 1.61 Å stimmt gut überein mit dem Wert von 1.63 Å, welcher bei der Röntgenstrukturanalyse von 9-Diisopropylamino-9-bora-bicyclo[4,2,1]nona-2,4,7-trien [9] gefunden wurde. Demgegenüber zeigten sich bei Verwendung anderer Programme (AM1) starke Abweichungen von vorhandenen Strukturdaten.



Abb. 2. SCHAKAL-Plot von III.



Abb. 3. SCHAKAL-Plot von III\*.

## 3. Experimenteller Teil

Alle Reaktionen wurden unter Ausschluß von Feuchtigkeit unter trockenem N2 ausgeführt. Analysen: Mikroanalytisches Laboratorium Beller, Göttingen und Analytisches Laboratorium des Instituts für Anorganische Chemie, Universität Göttingen. NMR: <sup>1</sup>H, <sup>13</sup>C (TMS int.), <sup>11</sup>B (Et<sub>2</sub>O · BF<sub>3</sub> ext.), <sup>19</sup>F (C<sub>6</sub>F<sub>6</sub> ext.); Bruker AM 250. MS: (EI) (70 eV), (FI); Varian MAT CH5. MNDO-Rechnung: J.J.P. Stewart, Programm MOPAC 6.0 auf IBM RS 6000, Betriebssystem AJX 3.2, QCPE No. 455. Ausgangsverbindungen: (i-C<sub>3</sub>H<sub>7</sub>)<sub>2</sub>NBF<sub>2</sub> [10],  $(i-C_3H_7)_2NBCl_2$  [11],  $(i-C_4H_9)_2NBF_2$  [12]. (s- $(C_4H_9)_2NBF_2$  (B) wurde analog zu  $(i-C_4H_9)_2NBF_2$  in einer Ausbeute von etwa 75% (Sdp. 90°C/70 mbar) dargestellt [12]. Die Ausbeuteangaben für A und I-VII sind auf das eingesetzte Dihalogen(diorganylamino) boran, für C auf Cycloocta-1,3-dien, bezogen.

TABELLE 3. Ausgewählte Bindungslängen (Å) und Bindungswinkel (°) von III

| C1-C2     | 1.3504  | B5-C7      | 1.6140  |
|-----------|---------|------------|---------|
| C1-C7     | 1.5230  | B5-N8      | 1.4165  |
| C2-C3     | 1.5221  | C6-C15     | 1.5401  |
| C3-C4     | 1.5478  | C7-C16     | 1.5496  |
| C3-B5     | 1.6151  | N8-C9      | 1.4905  |
| C4-C6     | 1.5433  | N8-C10     | 1.4918  |
|           |         | C15-C16    | 1.5433  |
| C1-C2-C3  | 112.901 | C3-B5-N8   | 128.319 |
| C2-C1-C7  | 113.141 | C4-C6-C15  | 118.025 |
| C1-C7-B5  | 98.966  | B5-C7-C16  | 113.418 |
| C1-C7-C16 | 112.962 | C7-B5-N8   | 127.711 |
| C2-C3-C4  | 113.186 | B5-N8-C9   | 119.300 |
| C2-C3-B5  | 99.098  | B5-N8-C10  | 118.676 |
| C3-C4-C6  | 118.076 | C6-C15-C16 | 118.821 |
| C4-C3-B5  | 113.007 | C7-C16-C15 | 118.861 |
| C3-B5-C7  | 103.808 | C9-N8-C10  | 122.006 |

| TABELLE 4. Ausgewählte | Bindungslängen | (Å) und | Bindungswinkel |
|------------------------|----------------|---------|----------------|
| (°) von III*           |                |         |                |

| () (011 111 |         |            |         |
|-------------|---------|------------|---------|
| C1-C2       | 1.3488  | N5-C11     | 1.4887  |
| C1-C6       | 1.5021  | N5-C12     | 1.4888  |
| C2-B3       | 1.5477  | C6-C7      | 1.5437  |
| B3-C4       | 1.5479  | C7-C8      | 1.5413  |
| B3-N5       | 1.4393  | C8-C9      | 1.5444  |
| C4-C10      | 1.3489  | C9-C10     | 1.5025  |
| C1-C2-B3    | 132.617 | B3-N5-C11  | 118.959 |
| C2-C1-C6    | 131.446 | B3-N5-C12  | 118.768 |
| C1-C6-C7    | 113.266 | C4-C10-C9  | 131.604 |
| C2-B3-C4    | 120.005 | C11-N5-C12 | 122.272 |
| C2-B3-N5    | 119.954 | C6-C7-C8   | 120.273 |
| B3-C4-C10   | 132.980 | C7-C8-C9   | 120.029 |
| C4-B3-N5    | 120.041 | C8-C9-C10  | 113.209 |
|             |         |            |         |

3.1. 1-Diisopropylamino-3,4-dimethyl-1-bora-cyclopent-3-en (A), 1-Diisopropylamino-3,4,7,8-tetramethyl-1bora-cyclonona-3,7-dien (I), 1-Diisopropylamino-4methyl-1-bora-cyclopent-3-en (II)

0.3 Mol des Diens (24.6 g 2,3-Dimethylbuta-1,3-dien, 20.4 g 2-Methylbuta-1,3-dien wurden zu 0.63 mol Na/K-Legierung (16 g K, 5 g Na) in 500 ml n-Hexan getropft, dann während 3 h 0.3 mol (54.6 g) Dichlor(diisopropylamino)boran zugetropft und etwa 60 h unter Rückfluß gekocht. Die erhaltene Suspension wurde in der Drucknutsche unter N<sub>2</sub> abgefrittet, das Lösungsmittel vom Filtrat bei 10 mbar in eine Kühlfalle gezogen und der verbliebene Rückstand destilliert.

A: Sdp. 50°C/0.002 mbar, farbl. Flüssigkeit, Ausb. 17.5 g (30.2%).

I: Sdp.  $73^{\circ}$ C/0.002 mbar, erstarrt nach der Destillation kristallin; das Produkt wurde aus n-Hexan umkristallisiert, dabei fielen Einkristalle für die Röntgenstrukturanalyse an. Schmp.  $83-86^{\circ}$ C, Ausb. 7.3 g (18.3%).

In einer bei 250°C/0.002 mbar siedenden Fraktion aus der Umsetzung zu A und I wurde massenspektroskopisch eine Mischung von Polymeren (n = 3-5) des 2,3-Dimethylbuta-1,3-diens

$$\begin{bmatrix} CH_3 & CH_3 \\ | & | \\ [CH_2C - CCH_2]_n, & n = 3-7 \end{bmatrix}$$

nachgewiesen. (m/z 246, 328, 410, 492, 574).

II: Sdp. 36°C/0.002 mbar, farbl. Flüssigkeit, Ausb. 14.5 g (27%). Ein zu I analoges 1-Bora-cyclonona-3,7dien-Derivat wurde in einer bei 70-80°C/0.002 mbar siedenden Fraktion durch MS nachgewiesen, eine Reindarstellung war wegen der möglichen Isomerenbildung nicht möglich. 3.2. 9-Diisopropylamino-9-bora-bicyclo[4,2,1]-non-7-en (III), 1,6-Bis(diisopropylamino-fluoroboryl)cyclo-non-7en (IV), 9-Diisobutylamino-9-bora-bicyclo[4,2,1]-non-7en (V), 9-Di-s-butylamino-9-bora-bicyclo[4,2,1]-oct-7-en (VI), 1,6-Bis(di-s-butylamino-fluoroboryl)-cyclooct-7-en (VII), Bis-2-octen-1-yl (C)

Zu 0.63 Mol Na/K-Legierung (16 g K, 5 g Na) in 600 ml n-Hexan (für C in 1,2-Dimethoxyethan) wurden 0.30 mol (33 g) Cycloocta-1,3-dien und anschließend im Laufe von 3 h 0.30 mol des jeweiligen Dihalogen(diorganylamino)borans (54.6 g Dichlor(diisopropylamino)boran für I), 44.7 g Difluor(diisopropylamino) boran für III, IV, 53.1 g Difluor(diisopropylamino)boran für V, 53.1 g Difluor(di-s-butylamino)boran für VI, VII, verdünnt jeweils mit etwa 50 ml n-Hexan) zugetropft. Nach 10 h Rühren bei 20°C wurde 10 h unter Rückfluß gekocht. Bei V wurde eine hellgraue, in allen übrigen Fällen eine dunkle Suspension erhalten. Die weitere Aufarbeitung erfolgte wie für A, I und II.

III: Sdp. 75-85°C/0.002 mbar, farblose Flüssigkeit. Ausbeute 35.2 g (54% bei Verwendung von Dichlor(diisopropylamino)boran), 16 g (25% bei Verwendung von Difluor(diisopropylamino)boran).

IV: Sdp.  $122^{\circ}C/0.002$  mbar, gelbl. Flüssigkeit, Ausb. 17 g (31%).

V: Sdp. 78-80°C/0.002 mbar, farbl. Flüssigkeit, Ausb. 27 g (36%).

VI: Sdp. 88–90°C/0.002 mbar, farbl. Flüssigkeit, Ausb. 24.5 g (33%).

VII: Sdp. 135°C/0.002 mbar, gelbl. Flüssigkeit, Ausb. 23.5 g (37%).

C: Sdp. 104-105°C/0.002 mbar, farbl. Flüssigkeit, Ausb. 19.5 g (38%).

In III, V und VI sind, wie die NMR-Spektren zeigten, auch III $^{\circledast}$ , V $^{\circledast}$  und VI $^{\circledast}$  enthalten.

Zur Reingewinnung von III wurden 5 g der Substanz in 1 l n-Hexan gelöst und bei  $-30^{\circ}$ C 24 h mit der Tauchlampe TNN 15/32 im Photoreaktor (Fa. Normag) bestrahlt. Das Lösungsmittel wurde dann wieder im Vakuum abgezogen und der Rückstand im Kugelrohrofen destilliert. Die anschließende NMR-Messung zeigte, daß III nun frei von III\* war.

## 3.3. Spektroskopische und Analytische Daten

**B**: Difluor(di-sek-butylamino)boran, (s-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub> NBF<sub>2</sub>: <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.85$  (t, <sup>3</sup>*J*(HH) = 6.4 Hz, 6H, CH<sub>2</sub>CH<sub>3</sub>), 1.12 (d, <sup>3</sup>*J*(HH) = 6.8 Hz, 3H, CH-CH<sub>3</sub>), 1.49 (m, 4H, CH<sub>2</sub>), 3.01 (m, 2H, CH). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 11.40$ , 11.52 (CH<sub>2</sub>CH<sub>3</sub>); 20.26, 20.35 (CHCH<sub>3</sub>); 29.11, 29.25 (CH<sub>2</sub>); 51.17, 51.68 (N-CH). <sup>19</sup>F-NMR (CDCl<sub>3</sub>):  $\delta = 33.2$ . <sup>11</sup>B-NMR (CDCl<sub>3</sub>):  $\delta = 17.4$ ,  $h_{1/2} = 110$  Hz.

 $C_8H_{18}BF_2N$  (117.04). MS (EI): m/z (%) = 5 (177) [M<sup>+</sup>], 92 (100); (FI): m/z (%) = 177 (100). Anal. Ber.

(Gef.) (%): C 54.27 (55.12), H 10.25 (10.42), N 7.91 (7.82).

A: <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.15$  (d, <sup>3</sup>*J*(HH) = 6.9 Hz, 12 H, N-CHC*H*<sub>3</sub>), 1.66 (s, 4H, B-C*H*<sub>2</sub>), 1.68 (s, 6H, C-C*H*<sub>3</sub>), 3.49 (sept., 2H, NC*H*CH<sub>3</sub>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 16.85$  (C-CH<sub>3</sub>), 23.03 (N-CHC*H*<sub>3</sub>), 31.25 (br, B-C*H*<sub>2</sub>), 48.42 (NC*H*CH<sub>3</sub>), 132.71 (Cq). <sup>11</sup>B-NMR (CDCl<sub>3</sub>):  $\delta = 49.2$ ,  $h_{1/2} = 260$  Hz.

 $C_{11}H_{22}BN$  (193.11). MS (EI): m/z (%) = 193 (30) [M<sup>+</sup>], 178 (100); (FI) = m/z (%) = 193 (100). Anal. Ber. (Gef.) (%): C 74.63 (74.46), H 12.38 (12.70), B 6.04 (5.69), N 7.25 (7.22).

I: <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.22$  (d, <sup>3</sup>*J*(HH) = 6.5 Hz, 12H, NCHC*H*<sub>3</sub>), 1.58 (s, 6H, C-C*H*<sub>3</sub>), 1.68 (s, 6H, C-C*H*<sub>3</sub>), 1.75 (s, 4H, B-C*H*<sub>2</sub>), 2.13 (2, 4H, C-C*H*<sub>2</sub>), 3.82 (br, 2H, NC*H*CH<sub>3</sub>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 20.41$ , 20.87, 23.63 (CH<sub>3</sub>); 27.85 (br, B-C*H*<sub>2</sub>); 24.03 (C-CH<sub>2</sub>); 47.36 (N-CHCH<sub>3</sub>); 126.53, 129.49 (Cq). <sup>11</sup>B-NMR (CDCl<sub>3</sub>):  $\delta = 46.1$ ,  $h_{1/2} = 290$  Hz.

 $C_{18}H_{34}BN$  (275.29). MS (EI): m/z (%) = 275 (15) [M<sup>+</sup>], 260 (100); (FI): m/z (%) = 275(100). Ber. (Gef.) (%): C 78.54 (78.32), H 12.45 (12.55), B 3.93 (3.89), N 5.09 (4.92).



<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.13$  (d, <sup>3</sup>*J*(HH) = 6.9 Hz, 6H, NCHC*H*<sub>3</sub>), 1.15 (d, <sup>3</sup>*J*(HH) = 6.9 Hz, 6H, NCHC*H*<sub>3</sub>), 1.61 (d v.q, <sup>3</sup>*J*(HH<sub>3</sub>) = 2.0 Hz, <sup>5</sup>*J*(HH<sub>6</sub>) = 1.1 Hz, 2H, B-C*H*<sub>2</sub>CH), 1.65 (d v.q, <sup>4</sup>*J*(HH<sub>3</sub>) = 2.4 Hz, <sup>4</sup>*J*(HH<sub>6</sub>) = 2.4 Hz, 2H, B-C*H*<sub>2</sub>-C-CH<sub>3</sub>), 1.76 (d v.t v.t, <sup>4</sup>*J*(HH<sub>3</sub>) = 1.5 Hz, <sup>4</sup>*J*(HH<sub>5</sub>) = 2,4 Hz, <sup>5</sup>*J*(HH<sub>2</sub>) = 1.1 Hz, 3H, C-C*H*<sub>3</sub>), 3.49 (sept., 1H, NC*H*CH<sub>3</sub>), 3.50 (sept., 1H, N-C*H*CH<sub>3</sub>), 5.48 (m, 1H, CH<sub>2</sub>C*H*). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 20.2$  (C-C*H*<sub>3</sub>); 22.8, 22.9 (NCHC*H*<sub>3</sub>); 24.7 (br, B-C*H*<sub>2</sub>CCH<sub>3</sub>); 29.1 (br, BC*H*<sub>2</sub>CH); 126.4 (3-C); 142.0 (4-C). <sup>11</sup>B-NMR (CDCl<sub>3</sub>):  $\delta = 50.2, h_{1/2} = 180$  Hz.

 $C_{11}H_{22}BN$  (179.11). MS (EI): m/z (%) = 179 (25) [M<sup>+</sup>], 164 (100); (FI): m/z (%) = 179 (100). Anal. Ber. (Gef.) (%): C 74.63 (73.75), H 12.53 (12.47), B 5.69 (5.91), N 7.22 (7.71).



<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.20$  (d, <sup>3</sup>J(HH) = 6.7 Hz, 12H, NCHCH<sub>3</sub>), 1.40 (m, 4H, CH<sub>2</sub>), 1.60 (m, 4H, CH<sub>2</sub>), 1.95 (m, 2H, CH), 3.60 (sept., 2H, N-CHCH<sub>3</sub>), 5.80 (m, 7-H, 8-H, 2H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 22.98, 23.60, 23.95 (N-CHCH<sub>3</sub>); 26.05, 27.56, 28.82, 30.58 (CH<sub>2</sub>); 32.4 (br, B-CH); 47.65, 47.80 (N-CHCH<sub>3</sub>); 136.53, 139.82 (7-C und 8-C). <sup>11</sup>B-NMR (CDCl<sub>3</sub>):  $\delta$  = 48.5,  $h_{1/2}$  = 180 Hz.

III führt zu folgenden Signalen im <sup>1</sup>H-NMR-Spektrum:  $\delta = 6.08-6.15$  (m, 7-H, 8-H); im <sup>13</sup>C-NMR-Spektrum:  $\delta = 132.9$  (br), 133.07, 136.36; im <sup>11</sup>B-NMR-Spektrum:  $\delta = 38.6$ . III und III<sup>®</sup> liegen zunächst etwa im Verhältnis 2:1 vor.

 $C_{14}H_{26}BN$  (219.18). MS (EI): m/z (%) = 219 (25) [M<sup>+</sup>], 204 (100); (FI): m/z (%) = 219 (100). Anal. Ber. (Gef.) (%): C 76.72 (76.59), H 11.96 (12.09), B 4.93 (4.82), N 6.39 (6.25).

**IV**: <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.08 (d, <sup>3</sup>*J*(HH) = 6.7 Hz, 6H, N-CHC*H*<sub>3</sub>), 1.11 (d, <sup>3</sup>*J*(HH) = 6.7 Hz, 6H, NCHC*H*<sub>3</sub>), 1.18 (d, <sup>3</sup>*J*(HH) = 6.7 Hz, 12H, NCHC*H*<sub>3</sub>), 1.60 (m), 1.75 (m), 2.30 (m) (CH<sub>2</sub>, CH, 10H), 3.15 (sept., 2H, NCHCH<sub>3</sub>), 3.65 (sept., 2H, NCHCH<sub>3</sub>), 5.50 (m, 2H, 7-H, 8-H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 22.94, 23.53, 23.87 (NCHC*H*<sub>3</sub>); 26.02, 27.53, 28.78, 30.54 (CH<sub>2</sub>); 32.5 (br, B-C*H*); 43.50, 46.52, 46.70 (N-C*H*CH<sub>3</sub>); 129.52, 129.55 (7-C, 8-C). <sup>19</sup>F-NMR (CDCl<sub>3</sub>):  $\delta$  = 55.0. <sup>11</sup>B-NMR (CDCl<sub>3</sub>):  $\delta$  = 32.3, *h*<sub>1/2</sub> = 480 Hz.

 $C_{20}H_{40}B_2F_2N_2$  (368.17). MS (EI): m/z (%) = 368 (30) [M<sup>+</sup>], 353 (100); (FI): m/iz (%) = 368 (100). Anal. Ber. (Gef.) (%): C 65.25 (65.17), H 10.95 (11.28), B 5.87 (5.45), N 7.61 (7.48).

V: <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.83$  (d, <sup>3</sup>*J*(HH) = 6.7 Hz, 6H, CH-CH<sub>3</sub>), 0.84 (d, <sup>3</sup>*J*(HH) = 6.6 Hz, 3H, CH-CH<sub>3</sub>), 0.87 (d, <sup>3</sup>*J*(HH) = 6.6 Hz, 3H, CH-CH<sub>3</sub>), 1.20–1.70 (m), 2.20–2.40 (m) (insgesamt 10H des Ringsystems), 1.87 (m, 2H, CHCH<sub>3</sub>), 2.88 (d, <sup>3</sup>*J*(HH) = 6.6 Hz, 4H, N-CH<sub>2</sub>), 5.75–5.85 (m, 7-H, 8-H), 6.20–6.35 (m, 7-H, 8-H, zu V<sup>®</sup>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 19.98$ , 20.23, 20.64 (CHCH<sub>3</sub>); 25.29, 25.89 (CHCH<sub>3</sub>); 27.41, 27.45, 29.15, 29.84 (CH<sub>2</sub> im Ring); 31.47 (br, B-C); 55.61, 56.23 (NCH<sub>2</sub>); 136.81, 144.12 (7-C, 8-C); 131.28 (br, B-C, zu V<sup>®</sup>). <sup>11</sup>B-NMR (CDCl<sub>3</sub>):  $\delta = 49.5$ ,  $h_{1/2} = 480$  Hz (I), 37.5,  $h_{1/2} = 440$  Hz (II zu V<sup>®</sup>). <sup>11</sup>B-NMR: V:V<sup>®</sup> ≈ 1:1. C<sub>16</sub>H<sub>30</sub>BN (247.23) MS (EI): m/z (%) = 247 (10) [M<sup>+</sup>], 86 (100); (FI): m/z (%) = 247/100. Ber. (Gef.)

(%): C 77.73 (77.40), H 12.23 (12.54), B 4.37 (4.26), N 5.67 (5.65). VI: <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.82$  (t, <sup>3</sup>*J*(HH) = 6.7 Hz,

VI: <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.82$  (t, <sup>3</sup>*J*(HH) = 6.7 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 0.88 (t, <sup>3</sup>*J*(HH) = 6.7 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 1.08 (d, <sup>3</sup>*J*(HH) = 6.7 Hz, 3H, CHCH<sub>3</sub>), 1.18 (d, <sup>3</sup>*J*(HH) = 6.7 Hz, 3H, CHCH<sub>3</sub>), 1.20–1.85 (br., 14H, CH<sub>2</sub>, CH), 3.05–3.20 (br, 2H, N-CH), 5.90 (m, 7-H, 8-H, 2H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 32.7$  (br, BCH); 12.26, 12.36, 20.79, 21.69 (CH<sub>3</sub>); 26.13, 27.68, 27.71, 28.97, 30.54, 30.65 (CH<sub>2</sub>); 51.23, 52.43 (N-CH); 136.50, 139.84 (7-C, 8-C). <sup>11</sup>B-NMR (CDCl<sub>3</sub>):  $\delta = 48.8$ ,  $h_{1/2} =$  420 Hz (I), 38.9,  $h_{1/2} = 380$  Hz (II, zu VI\* gehörend). Int. I : II ~ 4 : 1.

 $C_{16}H_{30}BN$  (247.23). MS (EI): m/z (%) = 247 (15) [M<sup>+</sup>], 218 (100); (FI): m/z (%) = 247 (100). Anal. Ber. (Gef.) (%): C 77.73 (77.41), H 12.23 (12.34), B 4.37 (4.29), N 5.67 (5.80).

VII: <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.82$  (t, <sup>3</sup>*J*(HH) = 6.7 Hz, 6H, CH<sub>2</sub>CH<sub>3</sub>), 0.86 (t, <sup>3</sup>*J*(HH) = 6.7 Hz, 6H, CH<sub>2</sub>CH<sub>3</sub>), 1.10–2.25 (br, 18H, CH<sub>2</sub>, CH), 2.85 (br, 2H, N-CH), 3.15 (br, 2H, N-CH), 5.22 (m, 7-H und 8-H, 2H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 12.19$ , 12.21, 12.38, 12.40, 20.41, 20.48, 21.16, 21.40 (CH<sub>3</sub>); 26.92, 27.18, 27.49, 28.85, 29.06, 30.48, 30.53, 30.69 (CH<sub>2</sub>); 31.5 (br, B-CH); 50.19, 50.24, 50.52, 53.24 (N-CH); 129.24, 129.41 (7-C, 8-C). <sup>11</sup>B-NMR (CDCl<sub>3</sub>):  $\delta = 32.4$ ,  $h_{1/2} = 1400$  Hz.

 $C_{24}H_{48}B_2F_2N_2$  (424.28). MS (EI): m/z (%) = 424 (15) [M<sup>+</sup>], 57 (100); (FI): m/z (%) = 424 (100). Anal. Ber. (Gef.) (%): C 67.94 (68.12), H 11.40 (11.60), B 5.10 (4.80), N 6.60 (6.51).



<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.20 (m, 8-H, 2H), 1.60 (m, 8-H, 2H), 1.5 (m, 7-H, 4H), 1.30 (m, 6-H, 2H), 1.7 (m, 6-H, 2h), 1.3 (m, 5-H, 2H), 1.7 (m, 4-H, 2H), 1.30 (m, 5-H, 2H), 2.0 (m, 4-H, 2H), 2.2 (m- 4-H, 2H), 2.4 (m, 1-H, 2H), 5.7 (m, 3-H, 2H), 5.3 (m, 2-H, 2H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 25.8 (7-C), 26.8 (4-C), 27.2 (6-C), 29.6 (5-C), 34.4 (7-C), 40.7 (1-C), 129.7 (3-C), 133.2 (2-C).

 $C_{16}H_{26}$  (338.49). MS (EI): m/z (%) = 218 (10) [M<sup>+</sup>], 67(100); (FI): m/z (%) = 218(100). Anal. Ber. (Gef.) (%): C 88.00 (88.19), H 12.00 (12.15).

## 3.4. Kristallstrukturanalyse von I [15\*]

 $C_{18}H_{34}BN$  (275.3), monoklin, Raumgruppe C2/c, a = 17.831(4), b = 10.407(3), c = 12.862(3) Å,  $\beta = 132.57(1)$ , V = 1758 Å<sup>3</sup>, Z = 4, berechnete Dichte: 1.040 g cm<sup>-3</sup>,  $\mu$ (Mo-K $\alpha$ ) = 0.058 mm<sup>-1</sup>, F(000) = 616, Kristalldimensionen:  $0.5 \times 0.5 \times 0.4$  mm, 5647 gemessene Intensitäten, Meßtemperatur:  $-183^{\circ}$ C,  $2\Theta$ max = 50°; Strukturlösung mit direkten Methoden [16], 1557 symmetrieunabhängige Reflexe zur Verfeinerung nach  $F^2$  [17], alle Nichtwasserstoffatome anisotrop, H-Atome ideal positioniert und nach dem Reitermodell verfeinert, N-Diisopropylgruppe über 2-zählige Achse ungeordnet, mit 1–2 und 1–3 Abstandsrestraints verfeinert, Extinktionskorrektur, 130 verfeinerte Parameter, wR2

Die Literaturnummer mit einen Sternchen deutet eine Bemerkung in der Literaturliste an.

= 0.1212 für alle Daten ( $wR2 = [\sum [w(F_o^2 - F_c^2)^2]/\sum [w(F_o^2)^2]]^{1/2}$ ), R1 = 0.046 für  $F > 4\sigma(F_o)$  (R1 =  $\sum ||F_o| - |F_c||/\sum |F_o|$ ),  $w^{-1} = \sigma^2(F_o^2) + (0.0523P)^2$ ) + 1.28P mit  $P = (F_o^2 + 2F_c^2)/3$ , GOOF = 1.030, maximale/minimale Restelektronendichte: 0.20/ - 0.18 eÅ<sup>-3</sup>.

# Dank

Für die Förderung dieser Arbeit danken wir der Volkswagenstiftung und dem Fonds der Chemischen Industrie.

#### Literatur und Bemerkungen

- 1 A. Meller, Pure Appl. Chem., 63 (1991) 395.
- 2 D. Bromm, D. Stalke, A. Heine, A. Meller und G.M. Sheldrick, J. Organomet. Chem., 386 (1990) 1.
- 3 W. Maringgele, H. Knop, D. Bromm, A. Meller, S. Dielkus, R. Herbst-Irmer und G.M. Sheldrick, *Chem. Ber.*, 125 (1992) 1807.
- 4 W. Maringgele, U. Seebold, A. Meller, S. Dielkus, E. Pohl, R. Herbst-Irmer und G.M. Sheldrick, *Chem. Ber.*, 125 (1992) 1559.
- 5 A. Meller, D. Bromm, W. Maringgele, A. Heine, D. Stalke und G.M. Sheldrick, *Chem. Ber.*, 123 (1990) 293.

- 6 W. Maringgele, A. Heine, S. Dielkus, M. Noltemeyer und A. Meller, J. Organomet. Chem., eingereicht.
- 7 P. Rademacher, Strukturen organischer Moleküle, VCH, Weinheim, 1987.
- 8 K. Suga, S. Watanabe und K. Kamma, Can. J. Chem., 45 (1967) 933.
- 9 W. Maringgele, D. Stalke, A. Heine, A. Meller und G.M. Sheldrick, Chem. Ber., 123 (1990) 489.
- 10 A. Meller, U. Seebold, W. Maringgele und M. Noltemeyer, Chem. Ber., 123 (1990) 967.
- 11 K. Niedenzu, H. Beyer, J.W. Dawson und H. Jenne, Chem. Ber., 96 (1963) 2653.
- 12 A. Meller, C. Böker, U. Seebold, D. Bromm, W. Maringgele, A. Heine, R. Herbst-Irmer, E. Pohl, D. Stalke, M. Noltemeyer und G.M. Sheldrick, *Chem. Ber.*, 124 (1991) 1907.
- 13 M.J.S. Dewar und W. Thiel, J. Am. Chem. Soc., 99 (1977) 4899.
- 14 M.J.S. Dewar und M.L. McKee, J. Am. Chem. Soc., 99 (1977) 5231
- 15 Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57723, der Autoren und des Zeitschriftenzitats angefordert werden.
- 16 G.M. Sheldrick, sHELXS-90, Acta Crystallogr., A46 (1990) 467
- 17 G.M. Sheldrick, shelxl-93, Universität Göttingen, 1993.